DETERMINATION OF VARIABLE COEFFICIENT OF

HEAT TRANSFER FOR A THIN SEMIINFINITE ROD

Yu. I. Babenko
UDC 536.242

The heat transfer in a semiinfinite rod, cooled from the lateral surface according to a timedependent law, is investigated. The law of heat transfer is found from the given temperature and the temperature gradient at the end-face of the rod.

In the problem

$$
\begin{gather*}
{\left[\frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}+\gamma(t)\right] T=0,0 \leqslant x<\infty, 0<t<\infty ;} \tag{1}\\
\left.T\right|_{x=0}=\vartheta(t) ; \tag{2}\\
\left.\frac{\partial T}{\partial x}\right|_{x=0}=q(t) \tag{3}\\
\left.T\right|_{x=\infty}=0 \tag{4}\\
\left.T\right|_{t=0}=0 \tag{5}
\end{gather*}
$$

from given values of the functions $\vartheta(t)$ and $q(t)$ it is required to determine the variable heat transfer coefficients $\gamma(\mathrm{t})$. This problem describes, for example, the cooling of a thin seminfinite rod by a liquid flux with changing velocity or temperature.

After the well known substitution $\theta=\mathrm{T} \exp \left(\int_{0}^{t} \gamma \mathrm{dt}\right)$, instead of (1) we have

$$
\begin{equation*}
\left(\frac{\partial}{\partial t}-\frac{\partial^{2}}{\partial x^{2}}\right) \theta=0 \tag{6}
\end{equation*}
$$

From here we can obtain the relationship among ϑ, q, and γ (for example, using the method discussed by us earlier [1, 2]) in the form

$$
\begin{equation*}
q \exp \left(\int_{0}^{t} \gamma d t\right)+\frac{d^{1 / 2}}{d t^{1 / 2}}\left[\vartheta \exp \left(\int_{0}^{t} \gamma d t\right)\right]=0 \tag{7}
\end{equation*}
$$

where we have used the fractional differentiation operator

$$
\begin{gather*}
\frac{d^{1 / 2} f(t)}{d t^{1 / 2}}=\frac{1}{\sqrt{\pi}} \frac{d}{d t} \int_{0}^{t} \frac{f(\tau) d \tau}{\overline{t-\tau}} \tag{8}\\
\frac{d^{1 / 2} t^{\mu}}{d f^{1 / 2}}=\frac{\Gamma(\mu-1-1)}{\Gamma\left(\mu+\frac{1}{2}\right)} t^{\mu-\frac{1}{2}}, \mu>-\frac{1}{2} \tag{9}
\end{gather*}
$$

Let the functions ϑ and q be given in the form of power series of $t^{1 / 2}$

$$
\begin{equation*}
\vartheta=\sum_{n=0}^{\infty} a_{n} t^{n / 2} ; \quad q=\sum_{n=0}^{\infty} b_{n} t^{(n-1) / 2} \tag{10}
\end{equation*}
$$

Then the solution can be constructed in the form of the series

State Institute of Applied Chemistry, Leningrad. Translated from Inzhenerno-Fizicheskii Zhurnal, Vol. 26, No. 4, pp. 732-734, April, 1974. Original article submitted October 1, 1973.

$$
\begin{equation*}
\exp \left(\int_{0}^{t} \nu d t\right)=\sum_{n=0}^{\infty} c_{n} t^{n / 2} \tag{11}
\end{equation*}
$$

Substituting (10) and (11) into (7) and equating the coefficients of equal powers of $t^{1 / 2}$ we successively determine all c_{n}. This is possible under the condition

$$
\begin{equation*}
a_{0}+\sqrt{\pi} b_{0}=0 \tag{12}
\end{equation*}
$$

Condition (12) is easy to explain physically. At the initial instant of time the law of cooling $\gamma(\mathbf{t})$ must not depend on the relationships between ϑ and q. Here c_{0} is an arbitrary quantity and the remaining constants are expressed in terms of c_{0} in the following way:

$$
\begin{gather*}
c_{1}=-\frac{a_{1} \Gamma(3 / 2)+b_{1}}{a_{0} \Gamma(3 / 2)+b_{0}} c_{0}=\alpha_{1} c_{0} \\
c_{2}=-\frac{\left[a_{1} \Gamma^{-1}(3 / 2)+b_{1}\right] c_{1}+\left[a_{2} \Gamma^{-1}(3 / 2)+b_{2}\right] c_{0}}{a_{0} \Gamma^{-1}(3 / 2)+b_{0}}=\alpha_{2} c_{0} \tag{13}\\
\cdots \cdots \cdot \cdots \\
c_{n}=-\frac{\sum_{k=1}^{n} c_{n-k}\left[\Gamma\left(\frac{n+2}{2}\right) \Gamma^{-1}\left(\frac{n+1}{2}\right) a_{k}+b_{h}\right]}{a_{0} \Gamma\left(\frac{n+2}{2}\right) \Gamma^{-1}\left(\frac{n+1}{2}\right)+b_{0}}=\alpha_{n} c_{0} .
\end{gather*}
$$

It is evident that arbitrary constant c_{0} occurs in all c_{n} only in the form of a factor, so that $c_{n}=\alpha_{n} c_{0}$. Therefore, in taking the logarithm and in differentiation of (11) c_{0} drops out and the final solution has the form

$$
\begin{equation*}
\gamma(t)=\left(\sum_{n=1}^{\infty} \frac{n}{2} \alpha_{n} t^{(n-2) / 2}\right)\left(1+\sum_{n=1}^{\infty} \alpha_{n} t^{n / 2}\right)^{-1} \tag{14}
\end{equation*}
$$

Example. Let $\vartheta=a_{0}, \mathrm{q}=-a_{0}(\pi t)^{-1 / 2}+b_{1}$. From (13) we get

$$
\begin{equation*}
\alpha_{n}=-\left(b_{1} / a_{0}\right)\left[\Gamma\left(\frac{n+2}{2}\right) \Gamma^{-1}\left(\frac{n+1}{2}\right)-\frac{1}{\sqrt{\pi}}\right]^{-1} \alpha_{n-1} \tag{15}
\end{equation*}
$$

Since $\lim _{n \rightarrow \infty}\left|\alpha_{n-1} / \alpha_{n}\right| \sim O(\sqrt{n})$, the series in (14) (for (15)) converges absolutely for all values of t.
NOTATION

$\alpha, a, \mathrm{~b}, \mathrm{c}$	are the coefficients in the power series;
T	is the temperature;
ϑ	is the temperature at the end-face of the rod;
q	is the temperature gradient at the end-face of the rod;
x	is the coordinate;
t	is the time;
γ	is the heat-transfer coefficient;
$\boldsymbol{\theta}$	is the auxiliary variable;
f	is the arbitrary function;
μ	is the index of the power function;
n, k	are the summation indices.

LITERATURE CITED

1. Yu. I. Babenko, Certain Problems Frequently Encountered in the Theory of Nonstationary Combustion, in: Combustion and Explosion [in Russian], Nauka (1972).
2. Yu. I. Babenko, Use of Fractional Derivatives in Problems of Heat Transfer, Proceedings IV AllUnion Conference on TMO, ITMO AN BSSR, Vol. 8, Minsk (1972), p. 541.
